Jumat, 01 November 2013

ELEKTROKIMIA II : SEL ELEKTROLISIS

.
Sel Elektrolisis adalah sel yang menggunakan arus listrik untuk menghasilkan reaksi redoks yang diinginkan dan digunakan secara luas di dalam masyarakat kita. Baterai aki yang dapat diisi ulang merupakan salah satu contoh aplikasi sel elektrolisis dalam kehidupan sehari-hari (lihat Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta). Baterai aki yang sedang diisi kembali (recharge) mengubah energi listrik yang diberikan menjadi produk berupa bahan kimia yang diinginkan. Air, H2O, dapat diuraikan dengan menggunakan listrik dalam sel elektrolisis. Proses ini akan mengurai air menjadi unsur-unsur pembentuknya. Reaksi yang terjadi adalah sebagai berikut : 2 H2O(l) ——> 2 H2(g)+ O2(g)
Rangkaian sel elektrolisis hampir menyerupai sel volta. Yang membedakan sel elektrolisis dari sel volta adalah, pada sel elektrolisis, komponen voltmeter diganti dengan sumber arus (umumnya baterai). Larutan atau lelehan yang ingin dielektrolisis, ditempatkan dalam suatu wadah. Selanjutnya, elektroda dicelupkan ke dalam larutan maupun lelehan elektrolit yang ingin dielektrolisis. Elektroda yang digunakan umumnya merupakan elektroda inert, seperti Grafit (C), Platina (Pt), dan Emas (Au). Elektroda berperan sebagai tempat berlangsungnya reaksi. Reaksi reduksi berlangsung di katoda, sedangkan reaksi oksidasi berlangsung di anodaKutub negatif sumber arus mengarah pada katoda (sebab memerlukan elektron) dan kutub positif sumber arus tentunya mengarah pada anoda. Akibatnya, katoda bermuatan negatif dan menarik kation-kation yang akan tereduksi menjadi endapan logam. Sebaliknya,anoda bermuatan positif dan menarik anion-anion yang akan teroksidasi menjadi gas. Terlihat jelas bahwa tujuan elektrolisis adalah untuk mendapatkan endapan logam di katoda dan gas di anoda.
Ada dua tipe elektrolisis, yaitu elektrolisis lelehan (leburan) dan elektrolisis larutan. Pada proses elektrolisis lelehankation pasti tereduksi di katoda dan anion pasti teroksidasi di anoda. Sebagai contoh, berikut ini adalah reaksi elektrolisis lelehan garam NaCl (yang dikenal dengan istilah sel Downs) :
Katoda (-) : 2 Na+(l) + 2 e- ——> 2 Na(s) ……………….. (1)
Anoda (+) : 2 Cl-(l) Cl2(g) + 2 e- ……………….. (2)
Reaksi sel : 2 Na+(l) + 2 Cl-(l) ——> 2 Na(s) + Cl2(g) ……………….. [(1) + (2)]
Reaksi elektrolisis lelehan garam NaCl menghasilkan endapan logam natrium di katoda dan gelembung gas Cldi anoda. Bagaimana halnya jika lelehan garam NaCldiganti dengan larutan garam NaCl? Apakah proses yang terjadi masih sama? Untuk mempelajari reaksi elektrolisis larutan garam NaCl, kita mengingat kembali Deret Volta (lihat Elektrokimia I : Penyetaraan Reaksi Redoks dan Sel Volta).
Pada katoda, terjadi persaingan antara air dengan ion Na+. Berdasarkan Tabel Potensial Standar Reduksi, air memiliki red yang lebih besar dibandingkan ion Na+. Ini berarti, air lebih mudah tereduksi dibandingkan ion Na+. Oleh sebab itu, spesi yang bereaksi di katoda adalah air. Sementara, berdasarkan Tabel Potensial Standar Reduksi, nilai red ion Cl- dan air hampir sama. Oleh karena oksidasi air memerlukan potensial tambahan (overvoltage), maka oksidasi ion Cllebih mudah dibandingkan oksidasi air. Oleh sebab itu, spesi yang bereaksi di anoda adalah ion Cl-. Dengan demikian, reaksi yang terjadi pada elektrolisis larutan garam NaCl adalah sebagai berikut :
Katoda (-) : 2 H2O(l) + 2 e- ——> H2(g) + 2 OH-(aq) ……………….. (1)
Anoda (+) : 2 Cl-(aq) ——> Cl2(g) + 2 e- ……………….. (2)
Reaksi sel : 2 H2O(l) + 2 Cl-(aq) ——> H2(g) + Cl2(g) + 2 OH-(aq) ……………………. [(1) + (2)]
Reaksi elektrolisis larutan garam NaCl menghasilkan gelembung gas Hdan ion OH­(basa) di katoda serta gelembung gas Cldi anoda. Terbentuknya ion OHpada katoda dapat dibuktikan dengan perubahan warna larutan dari bening menjadi merah muda setelah diberi sejumlah indikator fenolftalein (pp). Dengan demikian, terlihat bahwa produk elektrolisis lelehan umumnya berbeda dengan produk elektrolisis larutan.
Selanjutnya kita mencoba mempelajari elektrolisis larutan Na2SO4. Pada katoda, terjadi persaingan antara air dan ion Na+. Berdasarakan nilai red, maka air yang akantereduksi di katoda. Di lain sisi, terjadi persaingan antara ion SO42- dengan air dianoda. Oleh karena bilangan oksidasi pada SO4-2 telah mencapai keadaan maksimumnya, yaitu +6, maka spesi SO42- tidak dapat mengalami oksidasi. Akibatnya, spesi air yang akan teroksidasi di anoda. Reaksi yang terjadi adalah sebagai berikut :
Katoda (-) : 4 H2O(l) + 4 e- ——> 2 H2(g) + 4 OH-(aq) ……………….. (1)
Anoda (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e- ……………….. (2)
Reaksi sel : 6 H2O(l) ——> 2 H2(g) + O2(g) + 4 H+(aq) + 4 OH-(aq) …………………….. [(1) + (2)]
6 H2O(l) ——> 2 H2(g) + O2(g) + 4 H2O(l) …………………. [(1) + (2)]
2 H2O(l) ——> 2 H2(g) + O2(g) …………………….. [(1) + (2)]
Dengan demikian, baik ion Namaupun SO42-, tidak bereaksi. Yang terjadi justru adalah peristiwa elektrolisis air menjadi unsur-unsur pembentuknya. Hal yang serupa juga ditemukan pada proses elektrolisis larutan Mg(NO3)dan K2SO4.
Bagaimana halnya jika elektrolisis lelehan maupun larutan menggunakan elektroda yang tidak inert, seperti Ni, Fe, dan Zn? Ternyata, elektroda yang tidak inert hanya dapat bereaksi di anoda, sehingga produk yang dihasilkan di anoda adalah ion elektroda yang larut (sebab logam yang tidak inert mudah teroksidasi). Sementara, jenis elektroda tidak mempengaruhi produk yang dihasilkan di katoda. Sebagai contoh, berikut adalah proses elektrolisis larutan garam NaCl dengan menggunakan elektroda Cu :
Katoda (-) : 2 H2O(l) + 2 e- ——> H2(g) + 2 OH-(aq) …………………….. (1)
Anoda (+) : Cu(s) ——> Cu2+(aq) + 2 e…………………….. (2)
Reaksi sel : Cu(s) + 2 H2O(l) ——> Cu2+(aq) + H2(g) + 2 OH-(aq) …………………….. [(1) + (2)]
Dari pembahasan di atas, kita dapat menarik beberapa kesimpulan yang berkaitan dengan reaksi elektrolisis :
  1. Baik elektrolisis lelehan maupun larutan, elektroda inert tidak akan bereaksi; elektroda tidak inert hanya dapat bereaksi di anoda
  2. Pada elektrolisis lelehan, kation pasti bereaksi di katoda dan anion pasti bereaksi di anoda
  3. Pada elektrolisis larutan, bila larutan mengandung ion alkali, alkali tanah, ion aluminium, maupun ion mangan (II), maka air yang mengalami reduksi di katoda
  4. Pada elektrolisis larutan, bila larutan mengandung ion sulfat, nitrat, dan ion sisa asam oksi, maka air yang mengalami oksidasi di anoda
Salah satu aplikasi sel elektrolisis adalah pada proses yang disebut penyepuhan. Dalam proses penyepuhan, logam yang lebih mahal dilapiskan (diendapkan sebagai lapisan tipis) pada permukaan logam yang lebih murah dengan cara elektrolisis. Baterai umumnya digunakan sebagai sumber listrik selama proses penyepuhan berlangsung. Logam yang ingin disepuh berfungsi sebagai katoda dan lempeng perak (logam pelapis) yang merupakan logam penyepuh berfungsi sebagai anoda. Larutan elektrolit yang digunakan harus mengandung spesi ion logam yang sama dengan logam penyepuh (dalam hal ini, ion perak). Pada proses elektrolisis, lempeng perak di anoda akan teroksidasi dan larut menjadi ion perak. Ion perak tersebut kemudian akan diendapkan sebagai lapisan tipis pada permukaan katoda. Metode ini relatif mudah dan tanpa biaya yang mahal, sehingga banyak digunakan pada industri perabot rumah tangga dan peralatan dapur.
Setelah kita mempelajari aspek kualitatif reaksi elektrolisis, kini kita akan melanjutkan dengan aspek kuantitatif sel elektrolisis. Seperti yang telah disebutkan di awal, tujuan utama elektrolisis adalah untuk mengendapkan logam dan mengumpulkan gas dari larutan yang dielektrolisis. Kita dapat menentukan kuantitas produk yang terbentuk melalui konsep mol dan stoikiometri.
Satuan yang sering ditemukan dalam aspek kuantitatif sel elektrolisis adalah Faraday (F). Faraday didefinisikan sebagai muatan (dalam Coulomb) mol elektron. Satu Faraday equivalen dengan satu mol elektron. Demikian halnya, setengah Faraday equivalen dengan setengah mol elektron. Sebagaimana yang telah kita ketahui, setiap satu mol partikel mengandung 6,02 x 1023 partikel. Sementara setiap elektron mengemban muatan sebesar 1,6 x 10-19 C. Dengan demikian :
1 Faraday = 1 mol elektron = 6,02 x 1023 partikel elektron x 1,6 x 10-19 C/partikel elektron 1 Faraday = 96320 C (sering dibulatkan menjadi 96500 C untuk mempermudah perhitungan)
Hubungan antara Faraday dan Coulomb dapat dinyatakan dalam persamaan berikut :
Faraday = Coulomb / 96500
Coulomb = Faraday x 96500
Coulomb adalah satuan muatan listrik. Coulomb dapat diperoleh melalui perkalian arus listrik (Ampere) dengan waktu (detik). Persamaan yang menunjukkan hubungan Coulomb, Ampere, dan detik adalah sebagai berikut :
Coulomb = Ampere x Detik
Q = I x t
Dengan demikian, hubungan antara Faraday, Ampere, dan detik adalah sebagai berikut :
Faraday = (Ampere x Detik) / 96500
Faraday = (I x t) / 96500
Dengan mengetahui besarnya Faraday pada reaksi elektrolisis, maka mol elektron yang dibutuhkan pada reaksi elektrolisis dapat ditentukan. Selanjutnya, dengan memanfaatkan koefisien reaksi pada masing-masing setengah reaksi di katoda dan anoda, kuantitas produk elektrolisis dapat ditemukan.
Berikut ini adalah beberapa contoh soal aspek kuantitatif sel elektrolisis :
1. Pada elektrolisis larutan AgNOdengan elektroda inert dihasilkan gas oksigen sebanyak 5,6 L pada STP. Berapakah jumlah listrik dalam Coulomb yang dialirkan pada proses tersebut?
Penyelesaian :
Reaksi elektrolisis larutan AgNOdengan elektroda inert adalah sebagai berikut :
Katoda (-) : Ag+ e——> Ag
Anoda (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e-
Gas Oterbentuk di anoda. Mol gas Oyang terbentuk sama dengan 5,6 L / 22,4 L = ¼ mol O2
Berdasarkan persamaan reaksi di anoda, untuk menghasilkan ¼ mol gas O2, maka jumlah mol elektron yang terlibat adalah sebesar 4 x ¼ = 1 mol elektron.
1 mol elektron = 1 Faraday = 96500 C
Jadi, jumlah listrik yang terlibat adalah sebesar 96500 C
2. Unsur Fluor dapat diperoleh dengan cara elektrolisis lelehan NaF. Berapakah waktu yang diperlukan untuk mendapatkan 15 L gas fluorin ( 1 mol gas mengandung 25 L gas) dengan arus sebesar 10 Ampere?
Penyeleasian :
Reaksi elektrolisis lelehan NaF adalah sebagai berikut :
K (-) : Na+(l) + e——> Na(s)
A (-) : 2 F-(l) ——> F2(g) + 2 e-
Gas Fterbentuk di anoda. Mol gas Fyang terbentuk adalah sebesar 15 L / 25 L = 0,6 mol F2
Berdasarkan persamaan reaksi di anoda, untuk menghasilkan 0,6 mol gas F2, akan melibatkan mol elektron sebanyak 2 x 0,6 = 1,2 mol elektron
1,2 mol elektron = 1,2 Faraday
Waktu yang diperlukan dapat dihitung melalui persamaan berikut :
Faraday = (Ampere x Detik) / 96500
1,2 = (10 x t) / 96500
t = 11850 detik = 3,22 jam
Jadi, diperlukan waktu selama 3,22 jam untuk menghasilkan 15 L gas fluorin
3. Arus sebesar 0,452 A dilewatkan pada sel elektrolisis yang mengandung lelehan CaCl2 selama 1,5 jam. Berapakah jumlah produk yang dihasilkan pada masing-masing elektroda?
Penyelesaian :
Reaksi elektrolisis lelehan CaCl2 adalah sebagai berikut :
K (-) : Ca2+(l) + 2 e——> Ca(s)
A (+) : 2 Cl-(l) ——> Cl2(g) + 2 e-
Mol elektron yang terlibat dalam reaksi ini dapat dihitung dengan persamaan berikut :
Faraday = (Ampere x Detik) / 96500
Faraday = (0,452 x 1,5 x 3600) / 96500 mol elektron
Berdasarkan persamaan reaksi di katoda, mol Ca yang dihasilkan adalah setengah dari mol elektron yang terlibat. Dengan demikian, massa Ca yang dihasilkan adalah :
Massa Ca = mol Ca x Ar Ca
Massa Ca = ½ x (0,452 x 1,5 x 3600) / 96500 x 40 = 0,506 gram Ca
Berdasarkan persamaan reaksi di anoda, mol gas Cl2 yang dihasilkan adalah setengah dari mol elektron yang terlibat. Dengan demikian, volume gas Cl(STP) yang dihasilkan adalah :
Volume gas Cl2 = mol Clx 22,4 L
Volume gas Cl= ½ x (0,452 x 1,5 x 3600) / 96500 x 22.4 L = 0,283 L gas Cl2
Jadi, produk yang dihasilkan di katoda adalah 0,506 gram endapan Ca dan produk yang dihasilkan di anoda adalah 0,283 L gas Cl(STP)
4. Dalam sebuah percobaan elektrolisis, digunakan dua sel yang dirangkaikan secara seri. Masing-masing sel menerima arus listrik yang sama. Sel pertama berisi larutan AgNO3, sedangkan sel kedua berisi larutan XCl3. Jika setelah elektrolisis selesai, diperoleh 1,44 gram logam Ag pada sel pertama dan 0,12 gram logam X pada sel kedua, tentukanlah massa molar (Ar) logam X tersebut!
Penyelesaian :
Reaksi elektrolisis larutan AgNO3 :
K (-) : Ag+(aq) + e——> Ag(s)
A (+) : 2 H2O(l) ——> O2(g) + 4 H+(aq) + 4 e-
Logam Ag yang dihasilkan sebanyak 1,44 gram; dengan demikian, mol logam Ag yang dihasilkan sebesar 1,44 / 108 mol Ag
Berdasarkan persamaan reaksi di katoda, mol elektron yang dibutuhkan untuk menghasilkan logam Ag sama dengan mol logam Ag (koefisien reaksinya sama)
Sehingga, mol elektron yang digunakan dalam proses elektrolisis ini adalah sebesar 1,44 / 108 mol elektron
Reaksi elektrolisis larutan XCl:
K (-) : X3+(aq) + 3 e——> X(s)
A (+) : 2 Cl-(l) ——> Cl2(g) + 2 e-
Arus yang sama dialirkan pada sel kedua, sehingga, mol elektron yang digunakan dalam proses elektrolisis ini sama seperti sebelumya, yaitu sebesar 1,44 / 108 mol elektron
Berdasarkan persamaan reaksi di katoda, mol logam X yang dihasilkan sama dengan 1 / 3 kali mol elektron, yaitu sebesar 1 / 3 x 1,44 / 108 mol X
Massa logam X = 0,12 gram; dengan demikian, massa molar (Ar) logam X adalah sebagai berikut:
mol = massa / Ar
Ar = massa / mol
Ar = 0,12 / (1 / 3 x 1,44 / 108) = 27
Jadi, Ar dari logam X adalah 27

Tidak ada komentar:

Posting Komentar